Deep Submicron VLSI Design

Silicon-on-Insulator Circuit Design
Outline

• Overview of Silicon-on-Insulator (SOI)
• Floating Body Voltage
• SOI Advantages
• SOI Disadvantages
• Implications for Circuit Styles
• Summary

Material from: CMOS VLSI Design
By Neil E. Weste and David Harris
SOI Overview

• Adopted for IBM PowerPC μprocessors in 1998
 – Higher performance and lower power than CMOS
 – Higher cost and complicated circuit design

• Differences from bulk CMOS:
 – Transistor source, drain, & body surrounded by insulating SiO₂ rather than substrate (well)
 – Eliminates most diffusion parasitic C
 – Body no longer tied to GND or V_{DD}
 • Any change in body voltage modulates V_t
SOI Inverter

Diagram showing a SOI Inverter with labels for GND, V_{DD}, nMOS Transistor, pMOS Transistor, p-substrate, and Insulator.
Two Types of SOI

- **Partially depleted (PD)**
 - Body thicker than channel depletion width
 - Body voltage changes
 - Depending on charge injected into bulk
 - Causes *history effect*, which changes V_t

- **Fully depleted (FD)**
 - Body thinner than channel depletion width
 - Fixed body charge
 - Body voltage does not change
 - Thin body makes this very hard to manufacture
 - Therefore, not used
IBM SOI Process
Floating Body Voltage

- Body voltage varies as body charges/discharges

- Charge paths to/from floating body
Body Charge Paths

- Reverse-biased drain-to-body D_{db} and source-to-body D_{sb} junctions
 - Carry small diode leakage currents into body
- High-energy carriers cause impact ionization
 - Create e^- hole pairs
 - Injected into gate or gate oxide
 - Cause hot e^- wearout
 - Corresponding holes accumulate in body
 - Most pronounced at $V_{DS} >$ intended operating point
 - I_{ii} is impaction ionization current into body
Ways for Charge to Exit Body

- As body voltage increases
 - Source-to-body D_{sb} junction slightly forward biases
 - Charge exiting from D_{sb} balances charge entering from D_{db}
- Rising gate/drain capacitively couples body upward
 - May strongly forward-bias source-to-body D_{sb} junction and spill charge out of body
 - During long idle periods body V goes to equilibrium
 - When switching resumes
 - Charge spills of body
 - Shifts body voltage and V_t significantly
SOI Advantages

- Lower $C_{diffusion}$ – largely eliminated
- Lower parasitic delay
- Lower dynamic power consumption
- Potential for lower V_t
 - Bulk CMOS – V_t varies with channel length
 - Poly etching variations cause V_t variations
 - Must make V_t high enough to limit worst-case subthreshold leakage
 - SOI
 - Smaller threshold variations
 - Nominal V_t can be close to worst-case
 - Faster transistors, especially at low V_{DD}
Subthreshold Swing

• Bulk CMOS – subthreshold slope of $n \nu_T \ln 10$
 – $\nu_T = kT/q$, n is process dependent
• Bulk CMOS has $n = 1.5$, subthreshold slope of 90 mV/decade
 – For each 90 mV decrease in V_{gs} below V_t
 subthreshold I reduces 10 X
• SOI (IBM) -- subthreshold slope of 75-85 mV/decade
• Double-gate MOSFETs and FINFETs are SOI variations
 – Offer even lower subthreshold slopes
 – Gate surrounds channel – turns off quicker
Latchup

- SOI is immune to latchup
SOI Disadvantages

- **History effect**
 - Changes in body V modulate V_t, vary gate delay
- Body voltage depends on whether device was idle or switching -- Delay is f (switching history)
- Overall, elevated body voltage:
 - Reduces V_t and makes gates faster
- Model history effect
 - Assign different propagation and contamination delays to each gate
 - IBM – history effect causes 8% gate delay variation
 - Less than process variations
More Disadvantages

• History effect:
 – Causes significant mismatches between otherwise matched transistors
 • Sense amplifier
 • Analog OPAMP
 • Gilbert cell analog multiplier (mixer)
 – Solve by introducing substrate contact to make transistor pair behave identically
Parasitic Bipolar Transistor

- Problem because body/base floats
Current Pulse Problems

• Hold source & drain high for a long time
 – While gate is low
 – Base floats high through diode leakage
• Then pull source low, and \(npn \) transistor turns ON
 – \(I_B \) flows from body/base to source/emitter
 – Causes \(\beta I_B \) to flow from drain/collector to source/emitter
 • \(\beta \) depends on channel length & doping but > 1
 – Get a current pulse from drain to source even though transistor should be OFF
Current Pulse

• Called *Pass-gate Leakage*
• Often happens to OFF pass transistors where source & drain are initially high and then go low
 – No problem for static circuits
 • ON transistors oppose glitch
 – Causes malfunctions in dynamic latches in logic
 • Need strong keepers to hold node steady
Self-Heating Problem

- SiO$_2$ is great thermal and electrical insulator
 - Heat accumulates in transistors
 - Rather than spreading to substrate as in CMOS
- Individual transistors with large power
 - Heat substantially more than the die
 - Deliver less current, slower
- Can raise T by 10 to 15 °C for clock and I/O devices
 - Less significant for logic
Implication for Circuits

• SOI good for fast CMOS logic
 – Smaller $C_{\text{diffusion}}$ gives lower parasitic delay
 – Lower V_t gives better drive current and lower delay
• SOI attractive for low-power design
 – Smaller $C_{\text{diffusion}}$ reduces dynamic power
 – Easier to scale down V_{DD}
 – Consider FINFETs – sharper subthreshold slope
• Static CMOS in PD SOI
 – Similar to bulk CMOS family, but faster
 – History effect causes pattern dependent delay variation
Dynamic Gates

- New Problem – pass-gate leakage
 - Causes dynamic latches and gates to lose charge on dynamic node

![Diagram of dynamic gate leakage](image)
Solve Pass-gate Leakage

• Staticize capacitive storage nodes
 – Cross-coupled inverter pair for latches
• \textit{p}MOS keeper for dynamic gates
 – Can pre-discharge internal nodes to prevent pass-gate leakage
 • Then have a charge sharing problem on internal nodes
• Staticizing transistors must be $\frac{1}{4}$ as strong as normal path
 – Slow down gates
Gated Clock Problems

• Gated clocks have increased skew
 – History effect makes clock switch more slowly
 • When activated after being disabled for a long time
SOI RAMs

• Require elaborate design
 – Pass-gate leakage
 – Floating bodies
Summary

- Overview of SOI
- Floating Body Voltage
- SOI Advantages
 - History effect
- SOI Disadvantages
- Implications for Circuit Styles